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A new computational approach for the inclusion of computational fluid dynamics flow solutions into predicting
sonic boom signatures is developed. Using existing computational fluid dynamics tools, a near-field flow solution is
obtained over the surface of a computational cylinder a certain distance away from the aircraft’s longitudinal axis.
Near-field to far-field multipole-matching methodology is performed to calculate the corrected far field without
calculating the multipole coefficients. The analytical derivation is provided and some results are presented and

discussed.
Nomenclature
A, = multipole distributions
F = Whitham F-function
F, = near-field (uncorrected) Fourier component of the
pressure cylinder
Fe far-field corrected Fourier component
fi(n) = nthterm in the expansion of the multipole function
Gy = 88
gn = multipole function, order n
oo far-field multipole function
K; = ith dummy function used in simplification
M = Mach number
N = number of multipoles used
n = multipole order
)4 = pressure values over a computational fluid dynamics
cylinder
R = radius of the computational fluid dynamics cylinder
r = radial coordinate
T = number of terms used in multipole expansion
X = axial coordinate
B = VM*-1
y = ratio of specific heats, 1.4
0 = azimuthal angle
K = t/2B8r
& = dummy variable
T = x—fr

L

ITH the ever-increasing power of computational resources,

many researchers [1-5] are using computational fluid
dynamics (CFD), advanced optimization, and multidisciplinary
techniques in the conceptual and preliminary stages of aircraft design
for sonic boom mitigation and shape optimization. CFD simulations
have the ability to offer much more accurate analysis of the flowfield
compared with the traditional linearized methods. If accurate sonic
boom signatures at the ground level are desired, the ideal
computational scenario would be to use CFD simulation all the way
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to the ground [6]. However, because this cannot be done in practical
simulations, Page and Plotkin [7] provided an efficient method to
incorporate CFD solutions for predicting sonic boom signatures on
the ground. Using George’s [8] multipole formulation, Page and
Plotkin [7] showed that the solution of the perturbation potential
equation using multipole formulation offers an elegant way to map
the near-field results to their far-field counterparts. It has also been
shown that if the extrapolation from near field to far field is not
performed, the resulting ground signatures might not converge [9]. It
is the belief of the authors that the numerical procedure suggested by
Page and Plotkin [7] can be altered to provide new insights into the
multipole-matching procedure, particularly because the implemen-
tation of their method is not available in the public domain. This
forms the motivation for the present study.
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Aircraft design for sonic boom reduction has received new life in
recent years due to market demand [10,11] and a successful flight
demonstration of the shaped sonic boom design philosophy [12].
With the renewed interest in this sector, many studies are being
conducted to design aircraft for sonic boom reduction using
nonlinear CFD analysis. Using CFD in sonic boom prediction
involves computation of pressure at the interface between the CFD
near field and acoustic far field. One of the methods used for this
calculation was proposed and implemented by Page and Plotkin [7].
Their procedure starts the numerical analysis by using a general
solution to the perturbation potential equation. Assuming lateral
symmetry of the flowfield, the strength of the multipole distribution
is obtained as shown in Eq. (1).
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The CFD pressure field is Fourier-decomposed into n modes, with
the corresponding Fourier components given in Eq. (2), where 6 is
the azimuthal ordinate, M is the freestream Mach number, y is the
ratio of specific heats, and p is the pressure over the CFD cylinder.

gulx, 1) = — M

Fo(t.R) =55 L [27 p(z. 0, R) O n=0
i @
F,(t,R) = T 3" p(t,0,R)cos(nf)dfd n #0

The Fourier component corresponding to the CFD flowfield is
given in terms of the multipole coefficients, as shown in Eq. (3),
where £ is the dummy integration variable and n is the same
multipole order used in Eq. (2).


http://dx.doi.org/10.2514/1.32035

RALLABHANDI AND MAVRIS 1965

1 A®
”“”‘Elvzzaﬁ‘g”@ )

The objective is to use known distributions of F,, as obtained from
Eq. (2), to obtain a far-field approximation F3°, as shown in Eq. (4).
This far-field approximation represents a solution sufficiently far
away from the aircraft so that the three-dimensional crossflow effects
near the aircraft are resolved. This is done so that ray-theory-based
acoustic propagation analysis can be used based on the
axisymmetric-equivalent-body method presented originally by
Whitham [13].

L[ AL®

Page and Plotkin [7] suggest using a numerical procedure to solve
for multipole distributions A, using Eqgs. (2) and (3) and then using
these distributions to obtain the corrected far field using Eq. (4).
Following along similar lines, Lyman and Morgenstern [14] claim to
have obtained the corrected far field to a multipole order of 11. In the
following sections, it is shown mathematically that the far-field
Fourier component F$° can be obtained directly from its near-field
counterpart F, without having to calculate the multipole
distributions.

III. Mathematical Formulation
of the Proposed Method
A. Derivation of the Strength of the Multipole Distribution

Using T = x — Br, the nonconstant denominator term in Eq. (1) is
expanded as follows:

ﬁ—mﬂ=ﬂ+mn=wﬂG§+Q )

Using the preceding substitution, the denominator term in Eq. (1)
is written as

1 1 1
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where « = t/28r. Invoking the inverse hyperbolic identity, the
interior term in the numerator of Eq. (1) is written as in Eq. (7).

X x\?2
cosh 1E—smh1 (E) -1 7

Equation (7) is recast in terms of «, as given in Eq. (8).
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Inverse hyperbolic expansions render the hyperbolic cosine term
in Eq. (1), as given in Eq. (9).
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Putting both denominator and numerator together in expression (1)
and simplifying yields Eq. (10) for the general expression of the nth-
order multipole g,,.

— 3terms
8 terms
-- 13terms
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Nondimensional axial location, x/I

Fig. 1 Comparison of multipole function expanded to varying terms.
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This expression can be split into two components, as shown in
Eq. (11). The first term, g.,, corresponds to the 1/./r far-field
dependence, independent of n, whereas the second term, G,, is
responsible for three-dimensional crossflow effects. The terms f;(n)
in Eq. (12) are obtained by expanding the combination of the
hyperbolic cosine term in Eq. (9) and the denominator term in Eq. (6)
to the required number of terms, 7 + 1. The expressions for some
fi(n) terms are provided in Appendix A.

Figure 1 depicts the expression (12) for successive multipole
orders n =0,...,5, using an increasing number of terms in the
approximation, as a function of the nondimensional body lengths
away from the aircraft longitudinal axis. It is seen that for the lower-
order multipoles, using a three- or eight-term approximation is
inferior to the 13-term approximation; however, as the order of the
multipoles increases, an eight-term approximation is sufficiently
accurate. Also observed from this plot is the fact that as the distance
behind the body increases, each of the multipole terms proceeds to a
value of 1 asymptotically. Furthermore, the rate of convergence to
the asymptotic limit of the higher-order multipoles is greater than
their lower-order counterparts. In this study, the final results are
calculated using a 13-term approximation [i.e., the first constant term
and 12f;(n) (i =0, ..., 11) terms].

8,(T.7) = g (7. V)G, (7, 1) an
where
- T\ T+1
cMm%ﬂ+;ﬁm@Q Lo a2)
and
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Substituting Eq. (12), with variables changed to (z-£, R), into the
uncorrected Fourier component of the F-function from Eq. (3) results
in Eq. (14) after expanding and rearranging the terms.

13)
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The solution strategy is to break up each of the integral terms in
Eq. (14) by performing integration by parts. The procedure builds
upon the relations provided in Eqgs. (3) and (4). Let us assume a
function for the indefinite integral in Eq. (15), where K; is the ith
dummy function used in the analytical simplification. The existence
of this integral is guaranteed based on the existence of F3°.

A,(6)
Vi—§
Using the indefinite integral function and imposing the limit

values yields Eq. (16), relating the unknown indefinite integral to the
far-field Fourier component. Rearranging the terms leads to Eq. (17).

dg =K, () (15)
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Consider the integral portion of the second term, which is
simplified as given in Eq. (18), using the indefinite integral in
Eq. (15).
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Using Eq. (17), Eq. (18) is expanded as in Eq. (19).
A T
/ 20 ae = drr + KO- 1@ + KO0l
—£) 0
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Equation (19) becomes Eq. (20) after the terms involving K (0)
drop out.
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Let the indefinite integral of K, () be as given in Eq. (21).
[x©d=r0 @1
Using Eq. (17), Eq. (21) is written as
[r@a=[rroenoi-te @@

Using the definite integral, with limits as specified in Eq. (14),
Eq. (23) is obtained.

A K (6) dE = A "FE(E) dE + K, (0)7 = Ky (1) — Ky(0) (23)

Shifting terms between the left- and right-hand sides of Eq. (23),
Eq. (24) is obtained to give the unknown function K, (7) in terms of
F.

Ky(r) = [0 “F(E) dt 1 K, (0)7 + Ko (0) (24)

Using Eq. (21), the integral portion of the third term in Eq. (14)
becomes the following.
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Using Egs. (17) and (24), Eq. (25) is simplified to
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Continuing along similar lines, Egs. (27) and (28) can be obtained
for the third and fourth integrals in Eq. (14). A clear pattern in the
expressions for these integrals can be observed. A generalization of
these is provided in Eq. (29). According to this generalized formula,
the integral terms in Eq. (14) can be recast as integral terms of the far-
field corrected Fourier component for any number of terms desired.
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Inserting these equations into Eq. (14) and simplification leads to
an expression relating the uncorrected Fourier component F,(z, R)
and the far-field corrected Fourier component F3°(7), as given in
Eq. (30). This shows that the corrected Fourier component may be
obtained from the uncorrected counterpart by solving the 7'th-order
integral equation for each multipole order represented by n.

F,(t,R) = F(7)

+Zf,(n>(z+ 1>'/ f FR(E) & - d&, (30)

0(i+1)times
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Fig. 4 Ground pressure signature comparison for configuration 1.
B. Solution Procedure for Obtaining the Corrected Fourier
Component

Let us represent a dummy function y as in Eq. (31). 7—1

F,(x,R) = yD + 3" film)(i + )y (32)
T Er i
y =/ [ F(E) dép - dE, 31) ’
0(T)times 0

Finally, the computed Fourier component of the corrected F-
function, F3°, is used to compute the actual F-function F to be
Under the preceding definition, Eq. (30) becomes a T'th-order supplied to the acoustic propagation scheme, as given in Eq. (33),
ordinary differential equation, as shown in Eq. (32). This equation where N is the number of multipoles used.
can be split into a system of T first-order differential equations and
solved simultaneously using a differential equation solver. Boundary -« o
conditions need to be specified to solve for the ODE system. In this F(r.0) = Z Fi¥(2) cos(nf) (33)
case, the boundary conditions that need to be specified are the =0
successive integrals of the corrected Fourier component at the first
axial location, which can be set to zero. Once the solution of the ODE

system is obtained, the corrected Fourier component can be IV.  Results
calculated in a straightforward manner. An example solution In this section, results obtained over two arbitrary configurations
procedure for 7 = 5 is provided in Appendix B. are presented and discussed.
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Fig. 3 Azimuthal comparison of corrected and uncorrected signatures using 13 multipoles.
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Fig. 5 CFD cylinder pressure contours for configuration 2.
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Fig. 6 Near-field signature comparison using different multipoles for
configuration 2.
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A. Example Case 1

To demonstrate the proposed approach, CFD cylindrical pressure
data are obtained around an arbitrary aircraft (configuration 1) [15]
with a length of 120 ft for a freestream Mach number of 120 ft and an
altitude of 50,000 ft. Following the derivation given in the previous
sections, the Fourier components of the near-field signature and the
corresponding far-field corrected signature are computed.

After the computation of several multipole far-field Fourier
components, they are azimuthally summed together to obtain the
actual F-function to be supplied to the acoustic propagation program.
Figure 2 compares the corrected and uncorrected components of the
undertrack F-function using 6 and 13 multipoles, shown as subscripts
in the legend, both using 13 terms in the G, expansion. A 12th-order
ODE, broken into a system of 12 first-order ODEs, is solved.
Comparing the uncorrected and corrected versions, it is seen that
because of the multipole correction, the magnitude of the peaks is
increased in the undertrack signature and flat regions are removed
due to azimuthal averaging. Increasing the number of multipoles to
13, causes additional correction in the form of expansion in the
midsection of the signature (between axial locations 285 and 315),
reduced magnitude ahead of this expansion, and increased
magnitude rear of it. This shows that using six multipoles is not
sufficient to obtain converged far-field correction results for this
configuration. Comparison of these two shows that additional
multipoles resolve the higher-order diffraction effects. As the
number of multipoles is increased, the accuracy of the correction is
improved. However, due to the decreasing multiplication factors for
higher-order multipoles, the effect on the correction gradually
decreases.

The comparison between the uncorrected and far-field corrected
pressure signatures at different azimuthal angles is depicted in Fig. 3.
It is seen that the corrected signature along the undertrack (0 deg) is
larger in magnitude than the uncorrected signature, whereas the
opposite is true as the azimuth angle proceeds toward more lateral
(90 deg) angles. This is explained as being caused by the diffraction
of lift.

Having obtained the corrected far-field F-function distributions,
the modified Thomas waveform parameter method [16] included
within PCBoom [17] is used to calculate the ground pressure
signatures. Figure 4 provides the comparison of the ground pressure
signatures using 6 and 13 multipoles, along with computed
signatures, without performing the far-field correction. First, it is
seen that if the CFD pressure is not corrected, then the resulting
ground signature has signature duration, shock strengths, and
magnitudes very different from their corrected counterparts. This
kind of behavior has been observed in the past. Observation of the
corrected ground signature using 6 and 13 multipoles reveals that

—_ 6 multipoles
13 multipoles
0.5

PR PR | | I
0 20 40 60 80 100
Time (ms)

b) Tangent hyperbolic rise time

Fig. 7 Sonic boom ground signature comparison using 13 multipoles for configuration 2.



RALLABHANDI AND MAVRIS

Comparison at 0°

== =Uncorrected
— Corrected

dp/P

-0.02

-0.04

-0.06

40 60 80 100

Axial Location
Comparison at 60°

120

0.03
= = =Uncorrected
— Corrected

“

0.02
0.01
0

S p/P

-0.01
-0.02
-0.03

-0.04 : : : :
60 80 100 120
Axial Location

40

5 p/P

5 p/P

1969

Comparison at 30°
0.04¢

== =Uncorrected
— Corrected

0.031
0.021
0.01r

-0.01}
-0.02}

-0.03}

~0.04 . . . "
40 60 80 100

Axial Location
Comparison at 90°

120

0.03¢
== =Uncorrected

0.02¢ — Corrected

0.01r
o
-0.01}
-0.02}

-0.03f

~0.04 . . . "
40 60 80 100

Axial Location

120

Fig. 8 Comparison between uncorrected and corrected signatures using 13 multipoles.
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Fig. 9 Comparison between corrected signatures using 6 and 13 multipoles.

considering more multipoles has two effects. First, the shock
magnitudes are slightly reduced and, more important, the rate of
expansion is more pronounced when more multipoles are used for
this configuration.

B. Example Case 2

The proposed CFD matching methodology is used to compare the
uncorrected and corrected signatures for a second configuration
(configuration 2). The CFD cylinder showing the pressure contours
for this geometry is depicted in Fig. 5 for a flowfield Mach number of
1.4.

Figure 6 depicts the corrected and uncorrected undertrack pressure
signatures using 6 and 13 multipoles. It is observed that the corrected

signatures have larger magnitude and are shifted left when compared
with their uncorrected counterparts. Consideration of 13 multipoles
causes the corrected signature shape to vary at multiple locations. It
shows that prematurely truncating the multipole order can affect the
pressure signature predicted on the ground. It is observed that this
configuration has a higher initial shock followed by smaller shocks
from other aircraft components. Therefore, from the sonic boom
minimization theory, one could predict that the sonic boom footprint
of this configuration is going to be less intense. Because the sonic
boom signature on the ground is extremely sensitive to the starting
pressure signature, it is important to include several multipoles in the
multipole-matching procedure, particularly for low-boom confi-
gurations. Additional comparisons using a lower or higher number of
terms can also be plotted to show the sensitivity of the results to the
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number of terms used, however, that is excluded here for brevity.
Using 13 terms was sufficient for the cases considered in this study.

The ground pressure signatures obtained using 6 and 13
multipoles over the CFD pressure cylinder of configuration 2 is
depicted in Fig. 7. Figure 7a shows that the duration of the signature
and the shock magnitudes are comparable, but the shock locations
are different because of the extent and location of the compression
and expansion regions in the near-field corrected signature. Figure 7b
shows the ground signature comparison using a tangent hyperbolic
rise time correction, assuming a 1-ms rise time for a shock pressure
jump of 1 psf. Itis seen that using 13 multipoles produces a signature
that is closer to a flat-top signature than using six multipoles. This
also substantiates our claim from the previous paragraph that this
configuration is a low-boom design.

The comparison between the uncorrected and far-field corrected
pressure signatures at various azimuthal angles is depicted in Fig. 8.
As observed before, the corrected signature along the undertrack
(0 deg) is larger in magnitude than the uncorrected signature,
whereas the opposite is true as the azimuth angle become more lateral
(90 deg). Finally, Fig. 9 depicts the comparison between far-field
corrected signatures using 6 and 13 multipoles at different azimuthal
angles. It is seen that the effect of increasing multipoles decreases as
the lateral angle increases.

Using the proposed computational strategy, the pressure field from
the CFD solver can be mapped to an equivalent far-field signature
that corrects the near-field signature to any desired multipole order

and to the desired number of multipole function approximation
terms.

V. Conclusions

A new computational procedure for the near-field to far-field
matching procedure was developed and implemented. This method
offers an elegant and efficient method to calculate corrected far-field
F-functions for extrapolation of CFD signatures to any desired
multipole order. The analytical derivation and the solution using
ordinary differential equations provides a new insight into solving
the matching problem. The approach presented is -easily
implemented in a computer. Other schemes for carrying out the
multipole-matching procedure are not available in the public
domain. The proposed procedure may need to be compared with
those schemes to test for accuracy and computational cost.

Appendix A: Expansions of Multipole Functions
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Appendix B: ODE System for 7' = 5

When expression (12) is truncated at 7 = 5, the resulting ODE is
given in Eq. (B1), using the definition provided in Eq. (31).

fo (n) 2f (”) 61, (n)
(5) JOV \,(4) 3) 2)
YR YRy TRy
S2A00 o) 10R0) -

Br" > TRy
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The preceding equation can be solved as a system of first-order
ODEzs, as given in Eq. (B2).

YW=y, W=y, W=y =y
1) fo(n) 2f1(n) 6/>(n) 24f5(n)
SR T R Ry T (R )
1207,n)
W)’—Fn(fa R)

The solution of the ODE system provides the solution vector
[, 2, 3, ¥4, ¥s]- F3°(7) is given by ygl). Therefore, the corrected
Fourier component is obtained by using the solution vector and the

final equation of the ODE system.
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